Fe b 20 06 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an algebraic approach to the Askey scheme of orthogonal polynomials ∗
نویسنده
چکیده
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. We call such a pair a Leonard pair on V . We give a correspondence between Leonard pairs and a class of orthogonal polynomials. This class coincides with the terminating branch of the Askey scheme and consists of the q-Racah, q-Hahn, dual q-Hahn, qKrawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual Hahn, Krawtchouk, Bannai/Ito, and orphan polynomials. We describe the above correspondence in detail. We show how, for the listed polynomials, the 3-term recurrence, difference equation, Askey-Wilson duality, and orthogonality can be expressed in a uniform and attractive manner using the corresponding Leonard pair. We give some examples that indicate how Leonard pairs arise in representation theory and algebraic combinatorics. We discuss a mild generalization of a Leonard pair called a tridiagonal pair. At the end we list some open problems. Throughout these notes our argument is elementary and uses only linear algebra. No prior exposure to the topic is assumed. ∗Lecture notes for the summer school on orthogonal polynomials and special functions, Universidad Carlos III de Madrid, Leganes, Spain. July 8–July 18, 2004. http://www.uc3m.es/uc3m/dpto/MATEM/summerschool/indice.html
منابع مشابه
A pr 2 00 8 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an algebraic approach to the Askey scheme of orthogonal polynomials ∗
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...
متن کامل2 7 A ug 2 00 4 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an algebraic approach to the Askey scheme of orthogonal polynomials ∗ Paul Terwilliger
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملar X iv : m at h / 03 06 30 1 v 1 [ m at h . Q A ] 1 9 Ju n 20 03 Leonard pairs and the q - Racah polynomials ∗
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V which satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respe...
متن کاملA pr 2 00 3 Two linear transformations each tri - diagonal with respect to an eigenbasis of the other ; the TD - D canonical form and the LB - UB canonical form ∗
Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A : V → V and B : V → V which satisfy both (i), (ii) below. (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing B is diagonal. (ii) There exists a basis for V with respe...
متن کامل